Reactive Ion Enhanced Magnetron Sputtering of Nitride Thin Films

Reactive Ion Enhanced Magnetron Sputtering of Nitride Thin Films
Author: Al-Ahsan Talukder
Publisher:
Total Pages: 0
Release: 2022
Genre: Electronic dissertations
ISBN:


Download Reactive Ion Enhanced Magnetron Sputtering of Nitride Thin Films Book in PDF, Epub and Kindle

Magnetron sputtering is a popular vacuum plasma coating technique used for depositing metals, dielectrics, semiconductors, alloys, and compounds onto a wide range of substrates. In this work, we present two popular types of magnetron sputtering, i.e., pulsed DC and RF magnetron sputtering, for depositing piezoelectric aluminum nitride (AlN) thin films with high Young's modulus. The effects of important process parameters on the plasma I-V characteristics, deposition rate, and the properties of the deposited AlN films, are studied comprehensively. The effects of these process parameters on Young's modulus of the deposited films are also presented. Scanning electron microscope imaging revealed a c-axis oriented columnar growth of AlN. Performance of surface acoustic devices, utilizing the AlN films deposited by magnetron sputtering, are also presented, which confirms the differences in qualities and microstructures of the pulsed DC and RF sputtered films. The RF sputtered AlN films showed a denser microstructure with smaller grains and a smoother surface than the pulsed DC sputtered films. However, the deposition rate of RF sputtering is about half of the pulsed DC sputtering process. We also present a novel ion source enhanced pulsed DC magnetron sputtering for depositing high-quality nitrogen-doped zinc telluride (ZnTe:N) thin films. This ion source enhanced magnetron sputtering provides an increased deposition rate, efficient N-doping, and improved electrical, structural, and optical properties than the traditional magnetron sputtering. Ion source enhanced deposition leads to ZnTe:N films with smaller lattice spacing and wider X-ray diffraction peak, which indicates denser films with smaller crystallites embedded in an amorphous matrix.