A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding

A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding
Author: Michael C. Burkhart
Publisher: ProQuest Dissertations Publishing
Total Pages: 134
Release: 2019-05-26
Genre: Mathematics
ISBN:


Download A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding Book in PDF, Epub and Kindle

Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a principled statistical framework for inferring the posterior distribution of the current state given all measurements up to the present time. For example, the Apollo lunar module implemented a Kalman filter to infer its location from a sequence of earth-based radar measurements and land safely on the moon. To perform Bayesian filtering, we require a measurement model that describes the conditional distribution of each observation given state. The Kalman filter takes this measurement model to be linear, Gaussian. Here we show how a nonlinear, Gaussian approximation to the distribution of state given observation can be used in conjunction with Bayes’ rule to build a nonlinear, non-Gaussian measurement model. The resulting approach, called the Discriminative Kalman Filter (DKF), retains fast closed-form updates for the posterior. We argue there are many cases where the distribution of state given measurement is better-approximated as Gaussian, especially when the dimensionality of measurements far exceeds that of states and the Bernstein—von Mises theorem applies. Online neural decoding for brain-computer interfaces provides a motivating example, where filtering incorporates increasingly detailed measurements of neural activity to provide users control over external devices. Within the BrainGate2 clinical trial, the DKF successfully enabled three volunteers with quadriplegia to control an on-screen cursor in real-time using mental imagery alone. Participant “T9” used the DKF to type out messages on a tablet PC. Nonstationarities, or changes to the statistical relationship between states and measurements that occur after model training, pose a significant challenge to effective filtering. In brain-computer interfaces, one common type of nonstationarity results from wonkiness or dropout of a single neuron. We show how a robust measurement model can be used within the DKF framework to effectively ignore large changes in the behavior of a single neuron. At BrainGate2, a successful online human neural decoding experiment validated this approach against the commonly-used Kalman filter.


A Discriminative Approach to Bayesian Filtering with Applications to Human Neural Decoding
Language: en
Pages: 134
Authors: Michael C. Burkhart
Categories: Mathematics
Type: BOOK - Published: 2019-05-26 - Publisher: ProQuest Dissertations Publishing

GET EBOOK

Given a stationary state-space model that relates a sequence of hidden states and corresponding measurements or observations, Bayesian filtering provides a prin
Computational Science – ICCS 2021
Language: en
Pages: 609
Authors: Maciej Paszynski
Categories: Computers
Type: BOOK - Published: 2021-06-11 - Publisher: Springer Nature

GET EBOOK

The six-volume set LNCS 12742, 12743, 12744, 12745, 12746, and 12747 constitutes the proceedings of the 21st International Conference on Computational Science,
Advances in Neural Information Processing Systems 15
Language: en
Pages: 1738
Authors: Suzanna Becker
Categories: Neural circuitry
Type: BOOK - Published: 2003 - Publisher: MIT Press

GET EBOOK

Proceedings of the 2002 Neural Information Processing Systems Conference.
Advanced Computational Intelligence Methods for Processing Brain Imaging Data
Language: en
Pages: 754
Authors: Kaijian Xia
Categories: Science
Type: BOOK - Published: 2022-11-09 - Publisher: Frontiers Media SA

GET EBOOK

Brain-Computer Interface and Its Applications
Language: en
Pages: 209
Authors: Duo Chen
Categories: Science
Type: BOOK - Published: 2023-03-31 - Publisher: Frontiers Media SA

GET EBOOK